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Structure of the spin-orbit coupling varies from material to material and thus finding the correct spin-orbit
coupling structure is an important step toward advanced spintronic applications. We show theoretically that the
curvature in a carbon nanotube generates two types of the spin-orbit coupling, one of which was not recognized
before. In addition to the topological phase-related contribution of the spin-orbit coupling, which appears in the
off-diagonal part of the effective Dirac Hamiltonian of carbon nanotubes, there is another contribution that
appears in the diagonal part. The existence of the diagonal term can modify spin-orbit coupling effects
qualitatively, an example of which is the electron-hole asymmetric spin splitting observed recently, and gen-
erate four qualitatively different behavior of energy-level dependence on parallel magnetic field. It is demon-
strated that the diagonal term applies to a curved graphene as well. This result should be valuable for spintronic
applications of graphitic materials.
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I. INTRODUCTION

Graphitic materials such as carbon nanotubes �CNTs� and
graphenes are promising materials for spintronic applica-
tions. Various types of spintronic devices are reported such
as CNT-based three-terminal magnetic tunnel junctions,1

spin diodes,2 and graphene-based spin valves.3 Graphitic ma-
terials are believed to be excellent spin conductors.4 The hy-
perfine interaction of electron spins with nuclear spins is
strongly suppressed since 12C atoms do not carry nuclear
spins. It is estimated that the spin-relaxation time in a CNT
�Ref. 5� and a graphene6 is limited by the spin-orbit coupling
�SOC�.

Carbon atoms are subject to the atomic SOC Hamiltonian
Hso. In an ideal flat graphene, the energy shift caused by Hso
is predicted to be �10−3 meV.7,8 Recently it is predicted8,9

that the geometric curvature can enhance the effective
strength of the SOC by orders of magnitude. This mechanism
applies to a CNT and also to a graphene which, in many
experimental situations, exhibits nanometer-scale
corrugations.10 There is also a suggestion11 that artificial
curved structures of a graphene may facilitate device
applications.

A recent experiment12 on ultraclean CNTs measured di-
rectly the energy shifts caused by the SOC, which provides
an ideal opportunity to test theories of the curvature-
enhanced SOC in graphitic materials. The measured shifts
are in order-of-magnitude agreement with the theoretical
predictions,8,9 confirming that the curvature indeed enhances
the effective SOC strength. The experiment revealed discrep-
ancies as well while existing theories predict the same
strength of the SOC for electrons and holes, which is natural
considering that both the conduction and valence bands
originate from the same � orbital, the experiment found con-
siderable asymmetry in the SOC strength between electrons
and holes. This electron-hole asymmetry implies that exist-
ing theories of the SOC in graphitic materials are
incomplete.

In this paper, we show theoretically that in addition to
effective SOC in the off-diagonal part of the effective Dirac

Hamiltonian, which was reported in the existing theories,8,9

there exists an additional type of the SOC that appears in the
diagonal part both in CNTs and curved graphenes. It is dem-
onstrated that the combined action of the two types of the
SOC produces the electron-hole asymmetry observed in the
CNT experiment12 and gives rise to four qualitatively differ-
ent behavior of energy-level dependence on magnetic field
parallel to the CNT axis.

This paper is organized as follows. In Sec. II, we show
analytical expressions of two types of the effective SOC in a
CNT and then explain how the electron-hole asymmetric
spin splitting can be generated in semiconducting CNTs ge-
nerically. Section III describes the second-order perturbation
theory that is used to calculate the effective SOC and sum-
marizes the tight-binding models of the atomic SOC and
geometric curvature. Section IV reports four distinct energy-
level dependence on magnetic field parallel to the CNT axis.
We conclude in Sec. V with implications of our theory on
curved graphenes and a brief summary.

II. EFFECTIVE SPIN-ORBIT COUPLING IN A CNT

We begin our discussion by presenting the first main re-
sult for a CNT with the radius R and the chiral angle
� �0���� /6, 0�� /6� for zigzag �armchair� CNTs�. We find
that when the two sublattices A and B of the CNT are used as
bases, the curvature-enhanced effective SOC Hamiltonian
Hsoc near the K point with Bloch momentum K becomes

Hsoc
K = ���K� /R��y ��K/R��y

��K
� /R��y ��K� /R��y

� , �1�

where �y represents the real spin Pauli matrix along the CNT
axis. The pseudospin is defined to be up �down� when an
electron is in the sublattice A�B�. Here the off-diagonal term
that can be described by a spin-dependent topological phase
are reported in Refs. 8 and 9 but the diagonal term was not
recognized before. Expressions for the parameters �K and �K�
are given by13
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�K

R
=

�soa��s − �p��Vpp
� + Vpp

� �

12�3Vsp
�2

e−i�

R
�2�

and

�K�

R
=

�soaVpp
�

2�3�Vpp
� − Vpp

� �
cos 3�

R
, �3�

where �so�12 meV �Ref. 14� is the atomic SOC constant, a
is the lattice constant 2.49 Å, and �s�p� is the atomic energy
for the s�p� orbital. Here, Vsp

� and Vpp
���� represent the cou-

pling strengths in the absence of the curvature for the �
coupling between nearest-neighbor s and p orbitals and the
���� coupling between nearest-neighbor p orbitals, respec-
tively. Note that the 	�K� 	 has the � dependence, whose impli-
cation on the CNT energy spectrum is addressed in Sec. IV.

For K� point with K�=−K, Hsoc
K� is given by Eq. �1� with �K

and �K� replaced by �K�=−�K
� and �K�

� =−�K� , respectively.
Implications of the diagonal term of the SOC become

evident when Eq. �1� is combined with the two-dimensional
Dirac Hamiltonian HDirac of the CNT. For a state near the K
point with the Bloch momentum K+k �k= �kx ,ky� , 	k	
	 	K	�, HDirac becomes15

HDirac
K = 
vF� 0 e−i��kx − iky�

e+i��kx + iky� 0
� , �4�

where vF is the Fermi velocity and the momentum compo-
nent kx along the circumference direction satisfies the quan-
tization condition kx= �1 /3R�� for a �n ,m� CNT with n−m
=3q+� �q�Z and �= �1,0� and �=tan−1��3m / �2n+m��.
For a semiconducting ��= �1� CNT, the diagonalization of
HDirac

K +Hsoc
K results in different spin splittings �Fig. 1�c�� of

−2�K� /R−2� Re��Kei�� /R and 2�K� /R−2� Re��Kei�� /R for
the conduction and valence bands, respectively. This ex-
plains the electron-hole asymmetry observed in the recent
experiment.12 Here we remark that neither the off-diagonal
��K� nor the diagonal ��K� � term of the SOC alone can gen-
erate the electron-hole asymmetry since the two spin split-
tings can differ by sign at best, which actually implies the

same magnitude of the spin splitting �see Fig. 1 for the sign
convention�. Thus the interplay of the two types is crucial for
the asymmetry.

III. THEORY AND MODEL

We calculate the �K and �K� analytically using degenerate
second-order perturbation theory and treating atomic SOC
and geometric curvature as perturbation. For simplicity, we
evaluate �K and �K� in the limit k=0. Although this limit is
not strictly valid since k=0 does not generally satisfy the
quantization condition on kx, one may still take this limit
since the dependence of �K and �K� on k is weak. An electron
at the K point is described by the total Hamiltonian HK,�0�

+Hso+Hc, where Hc describes the curvature effects and
HK,�0� describes the � and � bands in the absence of both Hso
and Hc. The �-band eigenstates of HK,�0� are given by

	
↑�↓�
K,�0�
 =

1
�2

��e−i�	�A
K
 � 	�B

K
��↑�↓� �5�

with the corresponding eigenvalues E↑�↓�
K,�0��E�0�=0. Here

	
↑�↓�
K,�0�
 with the upper �lower� sign amounts to the k=0 limit

of the eigenstate at the conduction-band bottom �valence-
band top�. �↑�↓� denotes the eigenspinor of �y. 	�A�B�

K 

= 1

�N
�r=rA�B�

eiK·r	pz
r
 is the orbital projection of 	
↑�↓�

K,�0�
 into
the sublattice A�B�, 	pz

r
 represents the pz orbital at the atomic
position r, and the z axis is perpendicular to the CNT surface.

When Hso and Hc are treated as weak perturbations, the
first-order contribution Hso to the effective SOC vanishes
since it causes the interband transition �Fig. 3� to the �
band.8 The next leading-order contribution to the effective
SOC comes from the following second-order perturbation
Hamiltonian HK,�2� �Ref. 16�:

HK,�2� = Hc

PK

E�0� − HK,�0�Hso + H.c., �6�

where the projection operator PK is defined by PK�1
−��=↑,↓	
�

K,�0�


�
K,�0�	. Another spin-dependent second-

order term Hso�PK / �E�0�−HK,�0���Hso �Ref. 17� is smaller
than Eq. �6� �by two orders of magnitude for a CNT with
R�2.5 nm� and thus ignored. Then the second-order energy
shift E↑�↓�

K,�2� is given by18

E↑
K,�2� = 
�A

K	HK,�2�	�A
K
 � � Re�
�A

K	HK,�2�	�B
K
ei�� ,

E↓
K,�2� = − E↑

K,�2�, �7�

where the upper �lower� sign applies to the energy shift of
the conduction-band bottom �valence-band top� and

�A

K	HK,�2�	�A
K
= 
�B

K	HK,�2�	�B
K
 is used. Then by comparing

E↑�↓�
K,�2� with Fig. 1, one finds

�K

R
= 
�A

K	HK,�2�	�B
K
,

�K�

R
= 
�A

K	HK,�2�	�A
K
 . �8�

Note that �K and �K� are related to pseudospin-flipping and
pseudospin-conserving processes, respectively.

To evaluate Eq. �8�, one needs explicit expressions for
Hso, Hc, and HK,�0�. Hso is given by �so�rLr ·Sr,

7 where Lr

E E

kyky ky
00 0

E(a) (b) (c)

2δ
�
K/R − 2νRe[δKeiθ]/R

−2δ
�
K/R − 2νRe[δKeiθ]/R−2νRe[δKeiθ]/R

−2νRe[δKeiθ]/R

FIG. 1. �Color online� Schematic of the lowest conduction-band
�red, E�0� and highest valence-band �blue, E�0� positions of a
semiconducting CNT predicted by HDirac

K +Hsoc
K for �a� �K=�K� =0,

�b� �K�0, �K� =0, and �c� �K�0, �K� �0. In �c�, the conduction or
valence band has larger spin splitting depending on the sign of �.
Arrows �green� show the spin direction along the CNT. The expres-
sions for the energy-level spacing are also provided. When they are
negative, the positions of the two spin-split bands should be
swapped.
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and Sr are, respectively, the atomic-orbital and spin angular
momentum of an electron at a carbon atom r. The tight-
binding Hamiltonian of the Hso can be written8 as Hso
= ��so /2��r=rA/B

�cr−
z†cr+

x −cr+
z†cr−

x + icr+
z†cr−

y + icr−
z†cr+

y + icr+
y†cr+

x

− icr−
y†cr−

x �+H.c., where cr+�−�
x , cr+�−�

y , and cr+�−�
z denote the an-

nihilation operators for 	px
r
�+�−�, 	py

r
�+�−�, and 	pz
r
�+�−�.

Here �+�−� denotes the eigenspinor of �z �+ /− for outward/
inward�. For later convenience, we express �+�−� in term of
�↑�↓� to obtain a expression for Hso,

Hso =
�so

2 �
r=rA/B

�i�cr↓
z†cr↓

x − cr↑
z†cr↑

x � + �e−i�cr↑
z†cr↓

y � − �ei�cr↓
z†cr↑

y �

+ i�e−i�cr↑
y†cr↓

x + ei�cr↓
y†cr↑

x �� + H.c. �9�

For the curvature Hamiltonian Hc, we retain only the
leading-order term in the expansion in terms of a /R. Up to
the first order in a /R, Hc reduces to Hc

��,

Hc
�� = �

rA

�
j=1

3

�
�=↑,↓

�Sj�crA�
z† cBj�

s + crA�
s† cBj�

z �

+ Xj�crA�
z† cBj�

x − crA�
x† cBj�

z � + Y j��crA�
z† cBj�

y − crA�
y† cBj�

z ���

+ H.c., �10�

where rA is a lattice site in the sublattice A and its three
nearest-neighbor sites in the sublattice B are represented by
Bj �j=1,2 ,3� �Fig. 2�. Here Sj, Xj, and Y j are proportional to
a /R and denote the curvature-induced coupling strengths of
s, px, and py orbitals with a nearest-neighbor pz orbital. Their
precise expressions that can be determined purely from geo-

metric considerations, are given by Sj =� jS̃j, Xj =� jX̃j, and

Y j =� jỸ j with �1�a / �2�3R�sin �, �2�a / �2�3R�sin�� /3
−��, and �3�a / �2�3R�sin�� /3+�� �Fig. 2�. Here

S̃1 = Vsp
� sin � ,

S̃2 = Vsp
� cos��

6
+ �� ,

S̃3 = Vsp
� cos��

6
− �� ,

X̃1 = − Vpp
� sin2 � − Vpp

� − Vpp
� cos2 � ,

X̃2 = − Vpp
� sin2��

3
− �� − Vpp

� − Vpp
� cos2��

3
− �� ,

X̃3 = Vpp
� sin2��

6
− �� + Vpp

� + Vpp
� cos2��

6
− �� ,

Ỹ1 = sin�2��
Vpp

� − Vpp
�

2
,

Ỹ2 = sin�2� −
2�

3
�Vpp

� − Vpp
�

2
,

Ỹ3 = sin�2� −
�

3
�Vpp

� − Vpp
�

2
. �11�

Lastly, for the factor HK,�0�, we use the Slater-Koster
parametrization19 for nearest-neighbor hopping. In �-band
calculation, s, px, and py orbitals are used as basis.

Combined effects of the three factors Hso, PK / �E�0�

−HK,�0��, and Hc are illustrated in Fig. 3. The real spin de-
pendence arises solely from Hso, which generates the factor
�y.

20 For the pseudospin, the combined effect of Hso and Hc
is to flip the pseudospin. When they are combined with the
pseudospin-conserving part of PK / �E�0�−HK,�0��, one obtains
the pseudospin-flipping process �Eq. �8�� determining �K. In
addition, PK / �E�0�−HK,�0�� contains the pseudospin-flipping
part, which is natural since states localized in one particular
sublattice are not eigenstates of HK,�0�. When the pseudospin-
flipping part of PK / �E�0�−HK,�0�� is combined with Hso and
Hc, one obtains the pseudospin-conserving process �Eq. �8��
determining �K� .

The signs of �Kei� and �K� /cos 3� are negative. We find
	��K� /cos 3�� /�K	=4.5 for tight-binding parameters in Ref.
21. Thus �K� is of the same order as �K,22 which is under-
standable since pseudospin-flipping terms in E�0�−HK,�0�

�with amplitudes Vpp
� and Vsp

� � are comparable in magnitude
to pseudospin-conserving terms �with amplitudes E�0�−�s�p��.

IV. BEHAVIOR IN A MAGNETIC FIELD

Next we examine further implications of our result in
view of the experiment,12 where the conduction-band bottom
and valence-band top positions of semiconducting CNTs

y
x

y
�

ω3 ω2

ω1 a

B3
A

B1

B2
a2

a1θ

ϕ

z
x

z
�

x

x
�

FIG. 2. �Color online� Two-dimensional honeycomb lattice
structure. x�y� is the coordinate around �along� the CNT with chiral
vector na1+ma2��n ,m� and chiral angle �. � j�j=1,2 ,3�, the
length between y axis passing A atom and its parallel �red dashed�
line is related with � j by � j �� j / �2R� �Eq. �10��. The coordinates
for the CNT is illustrated on the right. Here, x=�R.

Hso

Hπσ
c

Hso

π band

Hπσ
c

σ band
A

BA

B
PK

E(0)−HK,(0)

PK

E(0)−HK,(0)

PK

E(0)−HK,(0)

FIG. 3. �Color online� Schematic of the second-order transition
process generated by HK,�2� �Eq. �6��. Pseudospin transitions �be-
tween the sublattices A and B� and interband transitions �between �
and � bands� are illustrated.
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��= �1� are measured as a function of the magnetic field B
parallel to the CNT axis. We find that the � dependence �Eq.
�3�� of �K� has interesting implications. When cos 3� is suf-
ficiently close to 0 �close to armchair-type�, 	�K� 	 is smaller
than 	�Kei�	. The prediction of our theory in this situation is
shown in Figs. 4�a� and 4�b�. Note that the spin splitting of
both the conduction and valence bands becomes smaller as
the energy E increases. On the other hand, when cos 3� is
sufficiently close to 1 �close to zigzag-type�, 	�K� 	 is larger
than 	�Kei�	. In this situation �Figs. 4�c� and 4�d��, the energy
dependence of either valence or conduction band is inverted;
for �=+1�−1�, the spin splitting of the valence �conduction�
band becomes larger as the energy increases.

Combined with the electron-prevailing �Figs. 4�a� and
4�c� for �=+1� vs hole-prevailing �Figs. 4�b� and 4�d� for

�=−1� asymmetries in the zero-field splitting, one then finds
that there exist four distinct patterns of E vs B diagram,
which is the second main result of this paper. Among these
four patterns, only the pattern in Fig. 4�a� is observed in the
experiment,12 which measured two CNT samples. We pro-
pose further experiments to test the existence of the other
three patterns.

Here we remark that although Eqs. �1�–�3� are demon-
strated so far for semiconducting CNTs, they hold for metal-
lic CNTs ��=0� as well. For armchair CNTs with cos 3�=0,
�K� becomes zero and the spin splitting is determined purely
by �K. For metallic but nonarmchair CNTs, finding implica-
tions of Eq. �1� is somewhat technical since the curvature-
induced minigap appears near the Fermi level.23 Our calcu-
lation for �37,34��cos 3��0� and �60,0��cos 3�=1� CNTs
including the minigap effect indicates that they show behav-
iors similar to Figs. 4�b� and 4�d�, respectively. Thus nomi-
nally metallic CNTs exhibit spin-splitting patterns of �=−1
CNTs.

V. DISCUSSION AND SUMMARY

Lastly we discuss briefly the effective SOC in a curved
graphene.10 Unlike CNTs, there can be both convex-shaped
and concave-shaped curvatures in a graphene. We first ad-
dress the convex-shaped curvatures. When the local structure
of a curved graphene has two principal curvatures, 1 /R1 and
1 /R2 with the corresponding binormal unit vectors n1 and n2,
each principal curvature 1 /Ri �i=1,2� generates the effective
SOC, Eq. �1�, with �y replaced by � ·ni and R by Ri. The
corresponding �i and �i� values are given by Eqs. �2� and �3�
with � replaced by �i, where �i is the chiral angle with re-
spect to ni. Thus the diagonal term of the effective SOC is
again comparable in magnitude to the off-diagonal term. For
the concave-shaped curvatures, we find that the two types of
the SOC become −�i and −�i� with �i, respectively. We ex-
pect that this result may be relevant for the estimation of the
spin-relaxation length in graphenes6 and may provide in-
sights into unexplained experimental data in graphene-based
spintronic systems.24 We also remark that the effective SOC
in a graphene may be spatially inhomogeneous since the lo-
cal curvature of the nanometer-scale corrugations10 is not
homogeneous, whose implications go beyond the scope of
this paper.

In summary, we have demonstrated that the interplay of
the atomic SOC and the curvature generates two types of the
effective SOC in a CNT, one of which was not recognized
before. Combined effects of the two types of the SOC in
CNTs explain recently observed electron-hole asymmetric
spin splitting12 and generates four qualitatively different
types of energy-level dependence on the parallel magnetic
field. Our result may have interesting implications for
graphenes as well.

Note added. While we were preparing our manuscript, we
became aware of a related paper.25 However the effective
Hamiltonian �Eq. �1�� for the SOC and the four distinct types
of the magnetic field dependence �Fig. 4� are not reported in
the work.

FIG. 4. �Color online� Calculated energy spectrum of the
conduction-band bottom �red, E�0� and valence-band top �blue,
E�0� near K �solid lines� and K� �dashed lines� points in semicon-
ducting CNTs with R�2.5 nm as a function of magnetic field B
parallel to the CNT axis. The chiral vectors for each CNT are �a�
�38,34�, �b� �39,34�, �c� �61,0�, and �d� �62,0�, respectively. Arrows
�green� show spin direction along the CNT axis and �so denotes the
zero-field splitting. Assuming ky =0, the energy E including the
SOC, the Aharonov-Bohm flux �Ref. 15� �AB=B�R2, and the Zee-
man coupling effects is, E= �
vF

��kx+ �1 /R���AB /�0��2

+E↑�↓�
K�K��,�2�+ �g /2��B��B, with upper �lower� sign applying to the

conduction �valence� band. �0=hc / 	e	, �� =+1�−1� for �↑�↓�, vF=

−aVpp
� �3 /2, and g=2 �Ref. 12�. For estimation of E↑�↓�

K�K��,�2�, we use
tight-binding parameters in Ref. 21; Vss

� =−4.76 eV, Vsp
� =4.33 eV,

Vpp
� =4.37 eV, Vpp

� =−2.77 eV, �s=−6.0 eV, and �p=0 �Ref. 22�.

JAE-SEUNG JEONG AND HYUN-WOO LEE PHYSICAL REVIEW B 80, 075409 �2009�

075409-4



ACKNOWLEDGMENTS

We appreciate Philp Kim for his comment for the curved
graphenes. We acknowledge the hospitality of Hyunsoo Yang
and Young Jun Shin at National University of Singapore,

where parts of this work were performed. We thank Seung-
Hoon Jhi, Woojoo Sim, Seon-Myeong Choi, and Dong-Keun
Ki for helpful conversations. This work was supported by the
KOSEF �Basic Research Program No. R01-2007-000-
20281-0� and BK21.

1 S. Sahoo, T. Kontos, J. Furer, C. Hoffmann, M. Gräber, A. Cut-
tet, and C. Schönenberger, Nat. Phys. 1, 99 �2005�.

2 C. A. Merchant and N. Marković, Phys. Rev. Lett. 100, 156601
�2008�.

3 N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J.
van Wees, Nature �London� 448, 571 �2007�; S. Cho, Y.-F.
Chen, and M. S. Fuhrer, Appl. Phys. Lett. 91, 123105 �2007�.

4 K. Tsukagoshi, B. W. Alphenaar, and H. Ago, Nature �London�
401, 572 �1999�.

5 D. V. Bulaev, B. Trauzettel, and D. Loss, Phys. Rev. B 77,
235301 �2008�.

6 D. Huertas-Hernando, F. Guinea, and A. Brataas,
arXiv:0812.1921 �unpublished�.

7 H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and
A. H. MacDonald, Phys. Rev. B 74, 165310 �2006�; Y. Yao, F.
Ye, X.-L. Qi, S.-C. Zhang, and Z. Fang, ibid. 75, 041401�R�
�2007�.

8 D. Huertas-Hernando, F. Guinea, and A. Brataas, Phys. Rev. B
74, 155426 �2006�.

9 T. Ando, J. Phys. Soc. Jpn. 69, 1757 �2000�; A. DeMartino, R.
Egger, K. Hallberg, and C. A. Balseiro, Phys. Rev. Lett. 88,
206402 �2002�.

10 J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T.
J. Booth, and S. Roth, Nature �London� 446, 60 �2007�; E. Stol-
yarova, K. T. Rim, S. Ryu, J. Maultzsch, P. Kim, L. E. Brus, T.
F. Heinz, M. S. Hybertsen, and G. W. Flynn, Proc. Natl. Acad.
Sci. U.S.A. 104, 9209 �2007�; V. Geringer, M. Liebmann, T.
Echtermeyer, S. Runte, M. Schmidt, R. Rückamp, M. C.
Lemme, and M. Morgenstern, Phys. Rev. Lett. 102, 076102
�2009�; A. K. Geim, Science 324, 1530 �2009�.

11 V. M. Pereira and A. H. Castro Neto, Phys. Rev. Lett. 103,
046801 �2009�.

12 F. Kuemmeth, S. Ilani, D. C. Ralph, and P. L. McEuen, Nature
�London� 452, 448 �2008�.

13 The corresponding expression in Ref. 8 is slightly different from
Eq. �2� since the � band is treated in different ways. When a few
minor mistakes in Ref. 8 are corrected, the two expressions re-
sult in similar numerical values.

14 J. Serrano, M. Cardona, and T. Ruf, Solid State Commun. 113,
411 �2000�.

15 J. Ajiki and T. Ando, J. Phys. Soc. Jpn. 62, 1255 �1993�.
16 Leonard I. Schiff, Quantum Mechanics �McGraw-Hill, New

York, 1968�.
17 Hc�PK / �E�0�−HK,�0���Hc is spin independent and thus ignored

�see Eq. �10��.
18 For the K� point, E↑

K�,�2�= 
�A
K�	HK�,�2�	�A

K�
�� Re

�
�A
K�	HK�,�2�	�B

K�
e−i��, E↓
K�,�2�=−E↑

K�,�2� with upper �lower� sign
for the conduction-band bottom �valence-band top�.

19 J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 �1954�.
20 The last four terms of Hso in Eq. �9�, which do not commute with

�y, do not contribute to the effective SOC near the Fermi energy
due to the factor e�i�8.

21 J. W. Mintmire and C. T. White, Carbon 33, 893 �1995�.
22 Using other sets of tight-binding parameters �D. Tománek and

M. A. Schluter, Phys. Rev. Lett. 67, 2331 �1991��; �R. Saito, M.
Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 46,
1804 �1992�� does not change results qualitatively.

23 C. L. Kane and E. J. Mele, Phys. Rev. Lett. 78, 1932 �1997�; L.
Yang and J. Han, ibid. 85, 154 �2000�; A. Kleiner and S. Eggert,
Phys. Rev. B 63, 073408 �2001�; J.-C. Charlier, X. Blase, and S.
Roche, Rev. Mod. Phys. 79, 677 �2007�.

24 See, for instance, W. Han, W. H. Wang, K. Pi, K. M. McCreary,
W. Bao, Y. Li, F. Miao, C. N. Lau, and R. K. Kawakami, Phys.
Rev. Lett. 102, 137205 �2009�.

25 L. Chico, M. P. López-Sancho, and M. C. Muñoz, Phys. Rev. B
79, 235423 �2009�.

CURVATURE-ENHANCED SPIN-ORBIT COUPLING IN A… PHYSICAL REVIEW B 80, 075409 �2009�

075409-5


